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ABSTRACT 
It is becoming increasingly important to find ways of communicating mathematics which 
facilitate automatic processing, searching and indexing, and reuse in other mathematical 
applications and contexts. With this advance in communication technology, there is an 
opportunity to expand our ability to represent, encode, and ultimately to communicate our 
mathematical insights and understanding with each other. At the same time, the web lacks an 
effective means for embedding mathematics in Web pages. Authors have been forced to use 
bitmapped images, which are slow to load, complex to produce, and look bad when printed. 
In this paper, we propose to use a mathematics extraction and recognition system, labelled 
EXTRAFOR, to provide an easy to add, use, learn and communicate Math on the Web. With 
EXTRAFOR, we are not only able to extract mathematical formulas automatically from 
digitally scanned image of a previously typeset documents but also to read, parse and re-use 
them in other applications and contexts. This can be done for a variety of purposes. An 
example of small-scale use is a reading machine for the visually impaired. Large scale use 
arises in the scanning and interpretation of a large collection of mathematical documents, for 
the creation of a database. Here, we investigate the use of such system for putting and 
communicating mathematics over the Web.  
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1. Introduction 
Since its inception, the Web has 
demonstrated itself to be a very effective 
method of making information available to 
widely separated groups of individuals. 
However, even though the Web was 
initially conceived and implemented by 
scientists for scientists, the capability to 
include mathematical formulas in HTML is 
very limited. At present, most mathematics 
on the Web consists of text with GIF 
images of scientific notation, which are 
difficult to read and to author. 
At the same time, many old documents in 
science and engineering disciplines contain 
mathematical formulas. But this material is 
not available in electronic form. Other 
newer sources are publications, articles, 
filled of useful information which is often 
difficult to get sources. Actually, the only 
way to use this mathematical information 
is to re-type formulas on keyboard to be 
able to add it in computer algebra system 

or in any application using mathematical 
input. The input of mathematical formulas 
into computers is often more difficult than 
the input of plain text, because 
mathematical formulas typically consist of 
special symbols and Greek letters in 
addition to English letters and digits.  
Our aim is to start from digitally scanned 
images of documents containing formulas, 
to extract and recognize them to be able to 
re-use them in other applications and 
contexts. This paper is also aimed at 
authors of Web contents who wish 
including mathematical formulas, as well 
as persons who want to read these 
contents. The education community is a 
large and important group that must be 
able to put scientific curriculum materials 
on the Web. But, they often have limited 
resources of time and equipment, and are 
severely hampered by the difficulty of 
authoring technical Web documents. 
Students and teachers need to be able to 
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create mathematical content quickly and 
easily, using intuitive, easy-to-learn, low-
cost tools. This paper presents 
EXTRAFOR as a tool that eases the use of 
mathematical and scientific content on the 
web. 

 
  

2. Problems in mathematics 
publishing and communicating 
How hard can it be to communicate about 
math on the Internet? The truth is, it's a 
fairly difficult task. The World Wide Web 
Consortium (W3C) has been developing a 
Mathematical Mark-up Language 
(MathML) since 1998 [1]. In the 
meantime, there is no standard method for 
representing math notation on the Web, 
and there are many, many choices for 
doing so, each with its own advantages and 
drawbacks. While there are fewer methods 
for communicating about math via email, 
it's not much easier to work with. The 
W3C recognized that lack of support for 
scientific communication was a serious 
problem. This paragraph is an attempt to 
clarify the issues around effectively 
displaying and communicating 
mathematics on the Internet. The most 
obvious problems with HTML for 
mathematics are of two kinds: display and 
encoding of formulas. Let’s consider this 
formula: 

 

It was laid out with a math typesetting 
program, converted to a transparent-
background GIF, and placed on a web page 
with an image tag. Anyone who views 
your formula on the web will see it with 
the font, type size, and spacing exactly as 
you've specified. Even if it looks fine on 
your own browser, someone may be 
viewing the page with a font/type size that 
clashes with what you've chosen for your 
GIF. A second point to observe that small 
images embedded in a line of text (like 

this: ) can throw off the line-spacing of a 
paragraph. In addition, image-based 
formulas are generally harder to see, read 

and comprehend than the surrounding text 
in the browser window. Moreover, these 
problems become worse when the 
document is printed.  
Some display problems associated with 
including math notation in HTML 
documents as images could be addressed 
by improving browser image handling. 
However, even if image handling were 
improved, the problem of making the 
information contained in mathematical 
expressions available to other applications 
would remain. Consider trying to search 
this page for part of the formula above, for 
example, the "lim". In a similar vein, 
consider trying to cut and paste a formula 
into another application; even more 
demanding is to cut and paste a sub-
formula. Using image based methods; 
neither of these common needs can be 
adequately addressed. Another problem 
with encoding mathematics as images is 
that it requires more bandwidth.  
Many people are working on ways to make 
mathematical notation easier to display on 
the web. None of these methods is without 
fault; most are in beta version, and most 
rely on the user (or web page author) 
having particular software and/or technical 
expertise. By using markup-based 
encoding, more of the rendering process is 
moved to the client machine. Markup 
describing a formula is typically smaller 
and more compressible than an image of 
the formula. Therefore, in planning for the 
future, it is not sufficient to merely 
upgrade image-based methods. To fully 
integrate mathematical material into Web 
documents, a markup-based encoding of 
mathematical notation and content is 
required.  
The goal of this study is to bring the power 
of mathematical formula to as many people 
as possible, and as quickly and easily as 
possible. The proposed medium is a Math 
Mark-up language called MathML 
designed for this purpose. But a language 
alone is not enough: with this design 
comes a deployed implementation that 
immediately makes formulas a reality for 
the scientific and mathematical Internet 
community. With EXTRAFOR, it's 



possible to reuse or insert mathematical 
formulas directly into a document and have 
them correctly displayed.  

 
3. Automatic segmentation and 
recognition of mathematical 
documents  
EXTRAFOR (automatic EXTRAction of 
mathematical FORmulas) was firstly 
conceived to extract mathematical 
formulas, outside and inside text-lines, 
automatically from images of printed 
documents without optical character 
recognition [2-4]. Then, it was extended to 
analyse, recognize and encode formulas 
using MATHML language. An overview 
of EXTRAFOR system is shown in Fig. 1. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1: EXTRAFOR system overview 
 

Mathematical formulas are typically 
embedded in text documents, either as 
offset formulas, or embedded directly into 
a line text. Thus, the first step in 
mathematics recognition is to identify 
where formulas are located on the page. 
We will bravely explain how EXTRAFOR 
works to find the mathematical formulas in 
the document. Then, we will mainly focus 
on the formula recognition steps especially 
on the structural analysis aspect which is 
particularly difficult for mathematics, due 
to the subtle use of space in this notation. 
We finally give an illustrative example of 
the retro-conversion XML of a 

mathematical document where formulas 
are encoded using MathML.  

 
3.1. Extraction of mathematicalformulas 
EXTRAFOR extracts mathematical 
formulas automatically from images of 
printed documents in order to mask them 
out in the optical character recognition 
(OCR) process, while on the other hand 
being able to analyse and recognize their 
content. The main goal is to have an OCR 
free system for the separation of text 
versus mathematics; hence it is mostly 
based on reasoning on bounding boxes of 
formulas components.  
As mathematical formulas are represented 
with various objects: alphabetic characters, 
numerals, math operators such as +, *, -, ∑, 
∏, ∫, (, [,  and so on, the extraction of those 
objects is the first step to locate 
mathematical formulas. EXTRAFOR must 
tentatively identify many of the connected 
components as particular characters. 
Characters that are known to be 
mathematical are used as tokens for 
formula extraction. EXTRAFOR first 
extracts a set of connected compounds 
using some attributes like ratio, area and 
density.  It assigns then a label to each of 
them according the role played in formula 
composition. This primary labelling serves 
to identify some mathematical symbols by 
the means of models created at a learning 
step using fuzzy logic. This labelling 
allows a global segmentation of the 
document which aims to discard isolated 
formulas from plain text. Text lines are 
labeled as isolated formulas based both on 
internal properties and on having increased 
high and similar white space on their left 
and right.  The remaining text-lines consist 
of a mixture of pure text and text with 
embedded formulas. For embedded 
formulas, a local segmentation of text-lines 
is required. It is done by location of their 
most significant symbols then extension to 
adjoining symbols using contextual rules 
until delimitation of whole formulas 
spaces. 
Though a satisfactory rate of extraction is 
obtained, more research is still required to 
be able to attain human-like performance. 
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Further work is required to extend this 
method to low quality documents with 
broken or touching characters. In fact, for 
low-resolution, noisy, or poorly scanned 
images, this processing may be not so 
efficient. Old papers may also do not scan 
well even at high resolution.  

 
3.2. Recognition of mathematical 
formulas 
Recognition of mathematical formulae has 
been a widely studied problem. In a 
mathematical formula, characters and 
symbols can be spatially arranged as a 
complex two-dimensional structure, 
possibly of different character and symbol 
sizes. This makes the recognition process 
more complicated even when all the 
individual characters and symbols can be 
recognized correctly. There are many 
contributions concerning this topic – 
several methods have been designed or 
adopted for the formulae recognition, 
taxonomy can be found in [5]. Most of the 
known methods follow two main stages: 
symbol recognition and symbol-
arrangement analysis. The former converts 
the input image into a set of symbols. The 
latter analyzes the spatial arrangement of 
this set of symbols to recover the 
information content of the given 
mathematical formula. Character 
recognition has been an active research 
area for more than three decades. Optical 
character recognition systems for 
mathematical documents which contain not 
only ordinary texts but also mathematical 
expressions have been investigated [6]. 
Structural analysis of two dimensional 
patterns also has a long history.  

 
3.2.1. Recognition of mathematical 
symbols 
Symbol recognition is difficult because 
there is a large character set (roman letters, 
Greek letters, operators, symbols…) with a 
variety of typefaces (normal, bold, italic), 
and a range of font sizes (subscripts, 
superscripts, limit expressions…). Certain 
symbols have an enormous range of 
possible scales (brackets, parentheses, ∫, Π, 
Σ…). To be able to recognize 

mathematical symbols, EXTRAFOR must 
first group them properly into units. This 
can be done by using some conventions in 
writing mathematical formulas as 
heuristics. Some of these conventions are 
as follows: 
- Some pieces multi-part characters or 

symbols should be joined together by 
vertical grouping to form symbols like 
‘=’ and attaching the dot over the “i” or 
the “j” to their body. 

- Some letters together form a unit, like 
trigonometric function names such as 
tan, sin and cos. Before considering a 
group of letters as a concatenation of 
variables, we have to first check whether 
they are in fact some predefined function 
names.  

- Symbols other than letters and digits 
should be considered as separate unit. 

Because of failure of OCR systems when 
treating with mathematical document, 
EXTRAFOR supply an automatic symbol-
recognizer. It works in conjunction with an 
OCR system by applying this latter only on 
characters and reusing the results obtained 
from the labelling step. 

 
3.2.2. Structural analysis of 
mathematical formulas 
Formulas contain significant structural 
information which is expressed as 2D 
spatial relations. Thus, mathematical 
formulae recognition is an appropriate 
application area for testing 2D grammars-
based approach. EXTRAFOR is based on 
material on [7] and includes complete 
grammars for the recognition of commonly 
used arithmetic notation. It uses a top-
down parsing scheme which starts with the 
ultimate syntactic goal and the entire set of 
input and attempts to partition the problem 
into sub goals until either every sub goal is 
reached, or else all possibilities have 
failed. A syntax rule provides instructions 
for the partitioning of a symbol set into 
subsets, and assigns a syntactic goal to 
each of these subsets. EXTRAFOR starts 
the parsing by locating of the most 
important operator in the formula and 
attempts to partition it into sub formulas 
which are similarly analyzed by looking 



for a starting point. The choice of the 
starting point is function of its precedence 
and dominance in the formula. When 
consecutive operators exist in a formula, 
we apply operator precedence rules. 
However, when those operators are not 
lined up, we have to use the concept of 
operator dominance. For example, in 
«

c
ba +  », the meaning is « a+(b/c) » due to 

the fact that the operator ‘+’ dominates ‘/’ 

(where ‘/’ lies in the range of ‘+’). 
However, in « 

d
cb +  », the meaning becomes 

« (a+b)/c » since ‘/’ dominates ‘+’ (where 
‘+’ lies in the range of ‘/’) in this case.  
Table 1 gives the input characters and 
symbols needed for mathematical formula 
syntaxes and the syntactic category which 
each of them is given by the pre-
processing. 

Character or mathematical symbol Syntactic category 
a, b, …, A, B,…, Z, α, β, …, ζ,∞ Letter 
0, 1, …, 9 Digit 
23, 1089, 0, 56,…. Unsigned_integer 
12.34, 8.709,… Unsigned_float 

+, -, ±, *, ., /, =, …∑, ∏, ∫ , ,, (, ), [, ], {, }, |, 
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Syntactic category represented by the 
symbol itself 

sin, cos, tan Trigonometric_function 
Det Determinant 

Table 1: Input objects and their syntactic categories 
 
Although mathematics is a relatively 
standardized notation, considerable 
variation is permitted in relative symbol 
placement. In light of this variability, it is 
not clear how to define and identify 
meaningful spatial relationships among 
symbols in a formula. Spatial relationships 
are especially critical for the recognition of 
implicit mathematical operators 
(subscripts, superscripts, implied 

multiplication…)[7]. Geometric criteria are 
used here to check if the symbols of a 
formula have possible links between them. 
It is about to subdivide plan into seven 
regions around the symbol: A (above), 
D(down), L (left), R(right), S (superscript), 
s(subscript) and I (included). We give, in 
table 2, some production rules, used for 
formula recognition and MathML 
encoding. 

Production rules Spatial relations hip MathML Encoding 
R1 : E à E + E E1=L(2) and E2=R(2) E0.code=<mrow> E1.code <mo>+</mo> E2.code </mrow> 
R2 : E à E – E E1=L(2) and E2=R(2) E0.code=<mrow> E1.code <mo> - </mo> E2.code </mrow> 
R3 : E à E ± E E1=L(2) and E2=R(2) E0.code=<mrow>E1.code<mo>&plusminus;</mo>E2.code</mrow

> 
R4 : E à E * E E1=L(2) and E2=R(2) E0.code=<mrow>E1.code<mo*</mo>E2.code</mrow> 
R5 : E à E / E E1=L(2) and E2=R(2) E0.code=<mrow>E1.code<mo>/</mo>E2.code</mrow> 
R6 : E à E . E E1=L(2) and E2=R(2) E0.code=<mrow>E1.code<mo>.</mo>E2.code</mrow> 
R7 : E à E E E1=L(2) and E2=R(1)  E0.code=<mrow>E1.code<mo>&invisibletimes;</mo>E2.code</m

row> 
R8 : E à + T T=R(1) E.code=<mrow> <mo>+</mo> T.code </mrow> 
R9 : E à - T T=R(1) E.code= <mrow> <mo> - </mo> T.code </mrow> 
R10 : E à T  E.code=T.code 

R11 : E à ∫
L

L

E d V 
L1= (D(1) or s(1)), 
L2= (A(1) or S(1)), 
E1= R(1) and V=R(5) 

if (L1≠ε et L2≠ε) then E0.code = <munsubsup> 
<mo>&int;</mo>L1.code L2.code</munsubsup> E1.code 
<mo>DifferentialD ;</mo> V.code else E0.code 
=<mo>&int;</mo> E1.code <mo>DifferentialD ;</mo> V.code 

R12 : E à ∑
L

S
E  

S=(D(1) or s(1)), 
L=((A(1) or S(1)) and 
E1=R(1) 

if (L≠ε) then E0.code = <munderover><mo>&sum ;</mo> S.code 
L.code </munderover>E1.code else E0.code = 
<munder><mo>&sum ;</mo> S.code </munder>E1.code 



R13 : E à ∏
L

S

E  
S=(D(1) or s(1)), 
L=((A(1) or S(1)) and 
E1=R(1) 

if (L≠ε) then E0.code = <munderover><mo>&prod;</mo>S.code 
L.code </munderover>E1.code else E0.code = 
<munder><mo>&prod;</mo> S.code </munder>E1.code 

R14 : E à
E
E  E1=A(2) and E2=D(2) E0.code = <mfrac>E1.code E2.code </mfrac> 

R15 : E à R E  E1=I(1) and R=S(1) if (R≠ε) then E0.code= <mroot>E1.code R.code</mroot> sinon 
E0.code=<sqrt> E1.code </sqrt> 

R16 : E à | E | E1=(R(1) and L(3)) E0.code=<mrow><mfenced open=”|” close=”|”>E1.code 
</mfenced></mrow> 

R17 : E à ( E ) E1=(R(1) and L(3)) E0.code= <mrow><mfenced> E1.code </mfenced></mrow> 

R18 : E à E X
D  D=s(1) and X=S(1,3)  if (D≠ε et X≠ε) then E0.code = <msubsup>E1.code D.code 

X.code</msubsup> else if (X=ε) then E0.code =<msub>E1.code 
D.code</msub> else E0.code =<msup> E1.code X.code</msup> 

R19 : E à det E  E1=R(1) E0.code=<mrow> <mo>det</mo> E1.code</mrow> 
R20 : E à trig XE X=S(1) and E1=R(1) if(X≠ε) then E0.code= <msup> <&Applyfunction ;> 

<mo>trig.val</mo> X.code </msup> E1.code else 
E0.code=<&Applyfunction ;> <mo>trig.val</mo> E1.code 

R21 :T à V  T.code = V.code 
R22 :T 
àunsigned_float 

 T.code = <mn>Unisgned_float.val</mn> 

R23 :Tàunsigned
_integer 

 T.code = <mn>Unsigned_integer.val</mn> 

R24 : L à E  L.code = E.code 
R25 : L à +∞  L.code = <mrow><mo>+</mo><mo>&infin;</mo></mrow> 
R26 : L à -∞  L.code = <mrow><mo>-</mo><mo>&infin;</mo></mrow> 
R27 : L à ∞  L.code = <mo>&infin;</mo> 
R28 : L à ε   
R29 : S à V = E V=L(2) and E=R(2) S.code = <mrow>V.code<mo>=</mo>E.code</mrow> 
R30 : S à V   S.code = V.code 
R31 : R à V  R.code=V.code 
R32: 
Ràunsigned_inte
ger 

 R.code=<mn> unsigned_integer.val</mn> 

R33 : R àε   
R34 : X àE  X.code=E.code 
R35 : X àε   
R36 : D àD, E D1=L(2) and E=R(2) D0.code= <mrow>D1.code <mo>,</mo> E.code</mrow> 
R37 : D à E  D.code=E.code 
R38 : V à letter D D=s(1) V.code=<msub><mi> letter.val</mi>D.code</msub>  
R39 : V à letter  V.code=<mi> letter.val</mi> 

Table 2: Rule production and MathML encoding 
 

We plan to deal with more complex 
formulas and confirm efficiency and 
performance of our method using a large 
database of mathematical formulas and 
documents. 

 
3.3. Retro-conversion of the 
mathematical document 
Fig. 2 shows the result obtained by 
EXTRAFOR to convert a line of a  
mathematical document in XML where 
Formulas are encoded in MathML. Note 
that whatever is the method used to create 

a Web page with a contents MathML, once 
this one exists, all advantages of a layer of 
powerful general communication appear. A 
diversity of software MathML can all use 
the same document to return it in a spoken 
or printed document, to send it to a system 
of algebra or to manage it as party of a vast 
collection of web document. For a high 
quality printed mathematical returning, the 
codification MathML will be often 
reconverted towards languages of standard 
composition, such as TEX, which is very 
appreciated for this job. 



  
 
<?xml version="1.0" encoding="ISO-8859-1"?> 
<?xml-stylesheet type="text/xsl" href="mathml.xsl"?> 
<HTML xmlns="http://www.w3.org/1999/xhtml" xml:lang="fr-FR" xmlns:m = "http://www.w3.org/1998/Math/MathML"> 
<body> 
<p>On vérifie bien que 
<math xmlns="http://www.w3.org/1998/Math/MathML"> 
<math display='block'> 
   <semantics> 
      < mrow> 
         < munderover> 
            < mo> &sum;</mo> 
            < mrow> 
               < mi> i</mi> <mo>= </mo> <mn>1</mn> 
            < /mrow> 
            < mn>6</mn> 
         < /munderover> 
         < mrow>        

<mi> P</mi> <mo stretchy='false'> (</mo><msub> 
               < mi> E</mi> 
               < mi> i</mi> 
            < /msub> 
            < mo stretchy='false'>)</mo> <mo>= </mo> <mn>1< /mn> 
         < /mrow> 
        </mrow> 
      <annotation encoding='MathType-MTEF'> 
         < /annotation> 
   < /semantics> 
</math> 
, puisque 
</p> 
</body> 
</html>     

Fig. 2: Example of XML converting of a part of mathematical document 
 
 
4. Conclusion and future works 
The image – based methods that are the 
predominant means of transmitting 
mathematic notation over the web are 
primitive and inadequate: document 
quality poor, authoring and reading are 
difficult, and mathematical information 
contained in images is not available for 
searching, indexing, or reuse in other 
applications and contexts. To put, use and 
communicate mathematical documents, 
math on the web must provide a standard 
way of publishing and sharing information 
that can be easily read, processed and 
generated using commonly available tools. 
EXTRAFOR is involved with math on the 
Web at the level of images of print books. 
In order to meet the diverse needs of the 
scientific community, EXTRAFOR has 
been designed with the ultimate goal in 

mind is to provides an easy to reuse 
formulas included in mathematical 
documents and encode mathematical 
material suitable for teaching and scientific 
communication. 
In this paper, we have demonstrated how 
EXTRAFOR extract then parse 
mathematical formulas using a coordinate 
grammar and encode them in MathML 
which facilitate automatic processing, 
searching and indexing, and reuse of 
mathematical documents. The overall 
system has shown its efficiency on a 
number of practical mathematical 
formulas. But, further work is required to 
extend this method to more complex 
formulas and documents and confirm 
efficiency and performance of our method 
using a large database.  
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