
EXTRAFOR for Math on the Web

Afef KACEM
UTIC, Tunis College of Sciences and Techniques, TUNISIA

Afef.kacem@esstt.rnu.tn

ABSTRACT
It is becoming increasingly important to find ways of communicating mathematics which
facilitate automatic processing, searching and indexing, and reuse in other mathematical
applications and contexts. With this advance in communication technology, there is an
opportunity to expand our ability to represent, encode, and ultimately to communicate our
mathematical insights and understanding with each other. At the same time, the web lacks an
effective means for embedding mathematics in Web pages. Authors have been forced to use
bitmapped images, which are slow to load, complex to produce, and look bad when printed.
In this paper, we propose to use a mathematics extraction and recognition system, labelled
EXTRAFOR, to provide an easy to add, use, learn and communicate Math on the Web. With
EXTRAFOR, we are not only able to extract mathematical formulas automatically from
digitally scanned image of a previously typeset documents but also to read, parse and re-use
them in other applications and contexts. This can be done for a variety of purposes. An
example of small-scale use is a reading machine for the visually impaired. Large scale use
arises in the scanning and interpretation of a large collection of mathematical documents, for
the creation of a database. Here, we investigate the use of such system for putting and
communicating mathematics over the Web.

Keywords: Extraction, recognition, mathematics, formula, symbol, MathML, XML.

1. Introduction
Since its inception, the Web has
demonstrated itself to be a very effective
method of making information available to
widely separated groups of individuals.
However, even though the Web was
initially conceived and implemented by
scientists for scientists, the capability to
include mathematical formulas in HTML is
very limited. At present, most mathematics
on the Web consists of text with GIF
images of scientific notation, which are
difficult to read and to author.
At the same time, many old documents in
science and engineering disciplines contain
mathematical formulas. But this material is
not available in electronic form. Other
newer sources are publications, articles,
filled of useful information which is often
difficult to get sources. Actually, the only
way to use this mathematical information
is to re-type formulas on keyboard to be
able to add it in computer algebra system

or in any application using mathematical
input. The input of mathematical formulas
into computers is often more difficult than
the input of plain text, because
mathematical formulas typically consist of
special symbols and Greek letters in
addition to English letters and digits.
Our aim is to start from digitally scanned
images of documents containing formulas,
to extract and recognize them to be able to
re-use them in other applications and
contexts. This paper is also aimed at
authors of Web contents who wish
including mathematical formulas, as well
as persons who want to read these
contents. The education community is a
large and important group that must be
able to put scientific curriculum materials
on the Web. But, they often have limited
resources of time and equipment, and are
severely hampered by the difficulty of
authoring technical Web documents.
Students and teachers need to be able to

mailto:Afef.kacem@esstt.rnu.tn

create mathematical content quickly and
easily, using intuitive, easy-to-learn, low-
cost tools. This paper presents
EXTRAFOR as a tool that eases the use of
mathematical and scientific content on the
web.

2. Problems in mathematics
publishing and communicating
How hard can it be to communicate about
math on the Internet? The truth is, it's a
fairly difficult task. The World Wide Web
Consortium (W3C) has been developing a
Mathematical Mark-up Language
(MathML) since 1998 [1]. In the
meantime, there is no standard method for
representing math notation on the Web,
and there are many, many choices for
doing so, each with its own advantages and
drawbacks. While there are fewer methods
for communicating about math via email,
it's not much easier to work with. The
W3C recognized that lack of support for
scientific communication was a serious
problem. This paragraph is an attempt to
clarify the issues around effectively
displaying and communicating
mathematics on the Internet. The most
obvious problems with HTML for
mathematics are of two kinds: display and
encoding of formulas. Let’s consider this
formula:

It was laid out with a math typesetting
program, converted to a transparent-
background GIF, and placed on a web page
with an image tag. Anyone who views
your formula on the web will see it with
the font, type size, and spacing exactly as
you've specified. Even if it looks fine on
your own browser, someone may be
viewing the page with a font/type size that
clashes with what you've chosen for your
GIF. A second point to observe that small
images embedded in a line of text (like

this:) can throw off the line-spacing of a
paragraph. In addition, image-based
formulas are generally harder to see, read

and comprehend than the surrounding text
in the browser window. Moreover, these
problems become worse when the
document is printed.
Some display problems associated with
including math notation in HTML
documents as images could be addressed
by improving browser image handling.
However, even if image handling were
improved, the problem of making the
information contained in mathematical
expressions available to other applications
would remain. Consider trying to search
this page for part of the formula above, for
example, the "lim". In a similar vein,
consider trying to cut and paste a formula
into another application; even more
demanding is to cut and paste a sub-
formula. Using image based methods;
neither of these common needs can be
adequately addressed. Another problem
with encoding mathematics as images is
that it requires more bandwidth.
Many people are working on ways to make
mathematical notation easier to display on
the web. None of these methods is without
fault; most are in beta version, and most
rely on the user (or web page author)
having particular software and/or technical
expertise. By using markup-based
encoding, more of the rendering process is
moved to the client machine. Markup
describing a formula is typically smaller
and more compressible than an image of
the formula. Therefore, in planning for the
future, it is not sufficient to merely
upgrade image-based methods. To fully
integrate mathematical material into Web
documents, a markup-based encoding of
mathematical notation and content is
required.
The goal of this study is to bring the power
of mathematical formula to as many people
as possible, and as quickly and easily as
possible. The proposed medium is a Math
Mark-up language called MathML
designed for this purpose. But a language
alone is not enough: with this design
comes a deployed implementation that
immediately makes formulas a reality for
the scientific and mathematical Internet
community. With EXTRAFOR, it's

possible to reuse or insert mathematical
formulas directly into a document and have
them correctly displayed.

3. Automatic segmentation and
recognition of mathematical
documents
EXTRAFOR (automatic EXTRAction of
mathematical FORmulas) was firstly
conceived to extract mathematical
formulas, outside and inside text-lines,
automatically from images of printed
documents without optical character
recognition [2-4]. Then, it was extended to
analyse, recognize and encode formulas
using MATHML language. An overview
of EXTRAFOR system is shown in Fig. 1.

Fig. 1: EXTRAFOR system overview

Mathematical formulas are typically
embedded in text documents, either as
offset formulas, or embedded directly into
a line text. Thus, the first step in
mathematics recognition is to identify
where formulas are located on the page.
We will bravely explain how EXTRAFOR
works to find the mathematical formulas in
the document. Then, we will mainly focus
on the formula recognition steps especially
on the structural analysis aspect which is
particularly difficult for mathematics, due
to the subtle use of space in this notation.
We finally give an illustrative example of
the retro-conversion XML of a

mathematical document where formulas
are encoded using MathML.

3.1. Extraction of mathematicalformulas
EXTRAFOR extracts mathematical
formulas automatically from images of
printed documents in order to mask them
out in the optical character recognition
(OCR) process, while on the other hand
being able to analyse and recognize their
content. The main goal is to have an OCR
free system for the separation of text
versus mathematics; hence it is mostly
based on reasoning on bounding boxes of
formulas components.
As mathematical formulas are represented
with various objects: alphabetic characters,
numerals, math operators such as +, *, -, ∑,
∏, ∫, (, [, and so on, the extraction of those
objects is the first step to locate
mathematical formulas. EXTRAFOR must
tentatively identify many of the connected
components as particular characters.
Characters that are known to be
mathematical are used as tokens for
formula extraction. EXTRAFOR first
extracts a set of connected compounds
using some attributes like ratio, area and
density. It assigns then a label to each of
them according the role played in formula
composition. This primary labelling serves
to identify some mathematical symbols by
the means of models created at a learning
step using fuzzy logic. This labelling
allows a global segmentation of the
document which aims to discard isolated
formulas from plain text. Text lines are
labeled as isolated formulas based both on
internal properties and on having increased
high and similar white space on their left
and right. The remaining text-lines consist
of a mixture of pure text and text with
embedded formulas. For embedded
formulas, a local segmentation of text-lines
is required. It is done by location of their
most significant symbols then extension to
adjoining symbols using contextual rules
until delimitation of whole formulas
spaces.
Though a satisfactory rate of extraction is
obtained, more research is still required to
be able to attain human-like performance.

Mathematical document
image

Extraction of
mathematical formulas

Mathematical
formulas

Plain
text

Models

base

Retro-conversion of
mathematical document

Recognition of
mathematical formulas

Further work is required to extend this
method to low quality documents with
broken or touching characters. In fact, for
low-resolution, noisy, or poorly scanned
images, this processing may be not so
efficient. Old papers may also do not scan
well even at high resolution.

3.2. Recognition of mathematical
formulas
Recognition of mathematical formulae has
been a widely studied problem. In a
mathematical formula, characters and
symbols can be spatially arranged as a
complex two-dimensional structure,
possibly of different character and symbol
sizes. This makes the recognition process
more complicated even when all the
individual characters and symbols can be
recognized correctly. There are many
contributions concerning this topic –
several methods have been designed or
adopted for the formulae recognition,
taxonomy can be found in [5]. Most of the
known methods follow two main stages:
symbol recognition and symbol-
arrangement analysis. The former converts
the input image into a set of symbols. The
latter analyzes the spatial arrangement of
this set of symbols to recover the
information content of the given
mathematical formula. Character
recognition has been an active research
area for more than three decades. Optical
character recognition systems for
mathematical documents which contain not
only ordinary texts but also mathematical
expressions have been investigated [6].
Structural analysis of two dimensional
patterns also has a long history.

3.2.1. Recognition of mathematical
symbols
Symbol recognition is difficult because
there is a large character set (roman letters,
Greek letters, operators, symbols…) with a
variety of typefaces (normal, bold, italic),
and a range of font sizes (subscripts,
superscripts, limit expressions…). Certain
symbols have an enormous range of
possible scales (brackets, parentheses, ∫, Π,
Σ…). To be able to recognize

mathematical symbols, EXTRAFOR must
first group them properly into units. This
can be done by using some conventions in
writing mathematical formulas as
heuristics. Some of these conventions are
as follows:
- Some pieces multi-part characters or

symbols should be joined together by
vertical grouping to form symbols like
‘=’ and attaching the dot over the “i” or
the “j” to their body.

- Some letters together form a unit, like
trigonometric function names such as
tan, sin and cos. Before considering a
group of letters as a concatenation of
variables, we have to first check whether
they are in fact some predefined function
names.

- Symbols other than letters and digits
should be considered as separate unit.

Because of failure of OCR systems when
treating with mathematical document,
EXTRAFOR supply an automatic symbol-
recognizer. It works in conjunction with an
OCR system by applying this latter only on
characters and reusing the results obtained
from the labelling step.

3.2.2. Structural analysis of
mathematical formulas
Formulas contain significant structural
information which is expressed as 2D
spatial relations. Thus, mathematical
formulae recognition is an appropriate
application area for testing 2D grammars-
based approach. EXTRAFOR is based on
material on [7] and includes complete
grammars for the recognition of commonly
used arithmetic notation. It uses a top-
down parsing scheme which starts with the
ultimate syntactic goal and the entire set of
input and attempts to partition the problem
into sub goals until either every sub goal is
reached, or else all possibilities have
failed. A syntax rule provides instructions
for the partitioning of a symbol set into
subsets, and assigns a syntactic goal to
each of these subsets. EXTRAFOR starts
the parsing by locating of the most
important operator in the formula and
attempts to partition it into sub formulas
which are similarly analyzed by looking

for a starting point. The choice of the
starting point is function of its precedence
and dominance in the formula. When
consecutive operators exist in a formula,
we apply operator precedence rules.
However, when those operators are not
lined up, we have to use the concept of
operator dominance. For example, in
«

c
ba + », the meaning is « a+(b/c) » due to

the fact that the operator ‘+’ dominates ‘/’

(where ‘/’ lies in the range of ‘+’).
However, in «

d
cb + », the meaning becomes

« (a+b)/c » since ‘/’ dominates ‘+’ (where
‘+’ lies in the range of ‘/’) in this case.
Table 1 gives the input characters and
symbols needed for mathematical formula
syntaxes and the syntactic category which
each of them is given by the pre-
processing.

Character or mathematical symbol Syntactic category
a, b, …, A, B,…, Z, α, β, …, ζ,∞ Letter
0, 1, …, 9 Digit
23, 1089, 0, 56,…. Unsigned_integer
12.34, 8.709,… Unsigned_float

+, -, ±, *, ., /, =, …∑, ∏, ∫ , ,, (,), [,], {, }, |,

,...
,

,
,

,
,

,
,

,
,

,
,

Syntactic category represented by the
symbol itself

sin, cos, tan Trigonometric_function
Det Determinant

Table 1: Input objects and their syntactic categories

Although mathematics is a relatively
standardized notation, considerable
variation is permitted in relative symbol
placement. In light of this variability, it is
not clear how to define and identify
meaningful spatial relationships among
symbols in a formula. Spatial relationships
are especially critical for the recognition of
implicit mathematical operators
(subscripts, superscripts, implied

multiplication…)[7]. Geometric criteria are
used here to check if the symbols of a
formula have possible links between them.
It is about to subdivide plan into seven
regions around the symbol: A (above),
D(down), L (left), R(right), S (superscript),
s(subscript) and I (included). We give, in
table 2, some production rules, used for
formula recognition and MathML
encoding.

Production rules Spatial relations hip MathML Encoding
R1 : E à E + E E1=L(2) and E2=R(2) E0.code=<mrow> E1.code <mo>+</mo> E2.code </mrow>
R2 : E à E – E E1=L(2) and E2=R(2) E0.code=<mrow> E1.code <mo> - </mo> E2.code </mrow>
R3 : E à E ± E E1=L(2) and E2=R(2) E0.code=<mrow>E1.code<mo>&plusminus;</mo>E2.code</mrow

>
R4 : E à E * E E1=L(2) and E2=R(2) E0.code=<mrow>E1.code<mo*</mo>E2.code</mrow>
R5 : E à E / E E1=L(2) and E2=R(2) E0.code=<mrow>E1.code<mo>/</mo>E2.code</mrow>
R6 : E à E . E E1=L(2) and E2=R(2) E0.code=<mrow>E1.code<mo>.</mo>E2.code</mrow>
R7 : E à E E E1=L(2) and E2=R(1) E0.code=<mrow>E1.code<mo>&invisibletimes;</mo>E2.code</m

row>
R8 : E à + T T=R(1) E.code=<mrow> <mo>+</mo> T.code </mrow>
R9 : E à - T T=R(1) E.code= <mrow> <mo> - </mo> T.code </mrow>
R10 : E à T E.code=T.code

R11 : E à ∫
L

L

E d V
L1= (D(1) or s(1)),
L2= (A(1) or S(1)),
E1= R(1) and V=R(5)

if (L1≠ε et L2≠ε) then E0.code = <munsubsup>
<mo>∫</mo>L1.code L2.code</munsubsup> E1.code
<mo>DifferentialD ;</mo> V.code else E0.code
=<mo>∫</mo> E1.code <mo>DifferentialD ;</mo> V.code

R12 : E à ∑
L

S
E

S=(D(1) or s(1)),
L=((A(1) or S(1)) and
E1=R(1)

if (L≠ε) then E0.code = <munderover><mo>&sum ;</mo> S.code
L.code </munderover>E1.code else E0.code =
<munder><mo>&sum ;</mo> S.code </munder>E1.code

R13 : E à ∏
L

S

E
S=(D(1) or s(1)),
L=((A(1) or S(1)) and
E1=R(1)

if (L≠ε) then E0.code = <munderover><mo>∏</mo>S.code
L.code </munderover>E1.code else E0.code =
<munder><mo>∏</mo> S.code </munder>E1.code

R14 : E à
E
E E1=A(2) and E2=D(2) E0.code = <mfrac>E1.code E2.code </mfrac>

R15 : E à R E E1=I(1) and R=S(1) if (R≠ε) then E0.code= <mroot>E1.code R.code</mroot> sinon
E0.code=<sqrt> E1.code </sqrt>

R16 : E à | E | E1=(R(1) and L(3)) E0.code=<mrow><mfenced open=”|” close=”|”>E1.code
</mfenced></mrow>

R17 : E à (E) E1=(R(1) and L(3)) E0.code= <mrow><mfenced> E1.code </mfenced></mrow>

R18 : E à E X
D D=s(1) and X=S(1,3) if (D≠ε et X≠ε) then E0.code = <msubsup>E1.code D.code

X.code</msubsup> else if (X=ε) then E0.code =<msub>E1.code
D.code</msub> else E0.code =<msup> E1.code X.code</msup>

R19 : E à det E E1=R(1) E0.code=<mrow> <mo>det</mo> E1.code</mrow>
R20 : E à trig XE X=S(1) and E1=R(1) if(X≠ε) then E0.code= <msup> <&Applyfunction ;>

<mo>trig.val</mo> X.code </msup> E1.code else
E0.code=<&Applyfunction ;> <mo>trig.val</mo> E1.code

R21 :T à V T.code = V.code
R22 :T
àunsigned_float

 T.code = <mn>Unisgned_float.val</mn>

R23 :Tàunsigned
_integer

 T.code = <mn>Unsigned_integer.val</mn>

R24 : L à E L.code = E.code
R25 : L à +∞ L.code = <mrow><mo>+</mo><mo>∞</mo></mrow>
R26 : L à -∞ L.code = <mrow><mo>-</mo><mo>∞</mo></mrow>
R27 : L à ∞ L.code = <mo>∞</mo>
R28 : L à ε
R29 : S à V = E V=L(2) and E=R(2) S.code = <mrow>V.code<mo>=</mo>E.code</mrow>
R30 : S à V S.code = V.code
R31 : R à V R.code=V.code
R32:
Ràunsigned_inte
ger

 R.code=<mn> unsigned_integer.val</mn>

R33 : R àε
R34 : X àE X.code=E.code
R35 : X àε
R36 : D àD, E D1=L(2) and E=R(2) D0.code= <mrow>D1.code <mo>,</mo> E.code</mrow>
R37 : D à E D.code=E.code
R38 : V à letter D D=s(1) V.code=<msub><mi> letter.val</mi>D.code</msub>
R39 : V à letter V.code=<mi> letter.val</mi>

Table 2: Rule production and MathML encoding

We plan to deal with more complex
formulas and confirm efficiency and
performance of our method using a large
database of mathematical formulas and
documents.

3.3. Retro-conversion of the
mathematical document
Fig. 2 shows the result obtained by
EXTRAFOR to convert a line of a
mathematical document in XML where
Formulas are encoded in MathML. Note
that whatever is the method used to create

a Web page with a contents MathML, once
this one exists, all advantages of a layer of
powerful general communication appear. A
diversity of software MathML can all use
the same document to return it in a spoken
or printed document, to send it to a system
of algebra or to manage it as party of a vast
collection of web document. For a high
quality printed mathematical returning, the
codification MathML will be often
reconverted towards languages of standard
composition, such as TEX, which is very
appreciated for this job.

<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl" href="mathml.xsl"?>
<HTML xmlns="http://www.w3.org/1999/xhtml" xml:lang="fr-FR" xmlns:m = "http://www.w3.org/1998/Math/MathML">
<body>
<p>On vérifie bien que
<math xmlns="http://www.w3.org/1998/Math/MathML">
<math display='block'>
 <semantics>
 < mrow>
 < munderover>
 < mo> ∑</mo>
 < mrow>
 < mi> i</mi> <mo>= </mo> <mn>1</mn>
 < /mrow>
 < mn>6</mn>
 < /munderover>
 < mrow>

<mi> P</mi> <mo stretchy='false'> (</mo><msub>
 < mi> E</mi>
 < mi> i</mi>
 < /msub>
 < mo stretchy='false'>)</mo> <mo>= </mo> <mn>1< /mn>
 < /mrow>
 </mrow>
 <annotation encoding='MathType-MTEF'>
 < /annotation>
 < /semantics>
</math>
, puisque
</p>
</body>
</html>

Fig. 2: Example of XML converting of a part of mathematical document

4. Conclusion and future works
The image – based methods that are the
predominant means of transmitting
mathematic notation over the web are
primitive and inadequate: document
quality poor, authoring and reading are
difficult, and mathematical information
contained in images is not available for
searching, indexing, or reuse in other
applications and contexts. To put, use and
communicate mathematical documents,
math on the web must provide a standard
way of publishing and sharing information
that can be easily read, processed and
generated using commonly available tools.
EXTRAFOR is involved with math on the
Web at the level of images of print books.
In order to meet the diverse needs of the
scientific community, EXTRAFOR has
been designed with the ultimate goal in

mind is to provides an easy to reuse
formulas included in mathematical
documents and encode mathematical
material suitable for teaching and scientific
communication.
In this paper, we have demonstrated how
EXTRAFOR extract then parse
mathematical formulas using a coordinate
grammar and encode them in MathML
which facilitate automatic processing,
searching and indexing, and reuse of
mathematical documents. The overall
system has shown its efficiency on a
number of practical mathematical
formulas. But, further work is required to
extend this method to more complex
formulas and documents and confirm
efficiency and performance of our method
using a large database.

http://www.w3.org/1999/xhtml
http://www.w3.org/1998/Math/MathML
http://www.w3.org/1998/Math/MathML

References
[1] TOPPING, P., « Les mathématiques sur
le Web : MathML et MathType», Design
Science, Inc. http://www.mathtype.com/,
21 janvier, 1999.
[2] Afef KACEM, “Mathematics
Extraction from Images of Scientific
Documents”, in proceedings of
International Conference on Document
Analysis and Recognition”, Bangalore-
India, 20-23 Septembre 1998.

[3] Afef KACEM “A Proposal Syntax-
Directed System for Mathematical
Document Recognition”, in I.J.D.A.R :
International Journal on Document
Analysis and Recognition, volume 4,
Number 2, pp. 97-108, Décembre 2001.

[4] Afef KACEM, “segmentation
automatique pour la retro-conversion de
documents mathématiques”, Ecole
nationale des sciences de l’informatique,
Tunisia, 2001.

[5] K.-F. Chan and D.-Y. Yeung.
Mathematical expression recognition: a
survey. In IJDAR, volume 3, pages 3–15,
2000.

[6] Masakazu Suzuki, Fumikazu Tamari,
Ryoji Fukuda, Seiichi Uchida, (2003).
Toshihiro Kanahori. INFTY: an integrated
OCR system for mathematical documents.
Proceedings of the 2003 ACM symposium
on Document engineering table of contents
Grenoble, 95/104.

[7] R. H. Anderson, “Two-Dimensional
Mathematical Notation”, In proceedings of
Syntactic Pattern Recognition
Applications, K.S. Fu, Ed. Springer
Verlag, New York , pp. 147-177, 1977.

http://www.mathtype.com

